
Intro to Tensors
& Pytorch

SCC setup instructions at the end

Outline
● What is a “Tensor”?
● Tensor Operations in Pytorch
● SCC + Environment setup

Starting from the basics…

What is a Tensor?
● Generic Answer: A generic structure that can be

used for storing, representing, and changing
data.

● Tensors can be thought of as multidimensional
generalizations of matrices.

● However, people from the math and physics
community might have a different definitions of
a tensor from those in the ML community.

○ Tensors in Physics and Math have a much more
complex formulation. (More on the next slide)

○ Tensors in ML, are just multi-dimensional arrays with a
fancy name. ("MultidimensionalArrayFlow" would not
have made a great name)

● Each small cube → represents an entry
source

https://i.stack.imgur.com/Lv1qU.jpg

More reading
● Tensor from the Math world:

https://mathworld.wolfram.com/Tensor.html

● Tensor from the Physics world:
https://www.physlink.com/education/askexperts/ae168.cfm

● Tensor from the ML world: A container to store your numerical values

https://mathworld.wolfram.com/Tensor.html
https://www.physlink.com/education/askexperts/ae168.cfm

Why do we need Tensors?
● Tensors along with improved hardware systems – allow for rapid

processing of huge amounts of data.

● Automatic Differentiation - Modern deep learning frameworks leverage
tensors for their automatic differentiation capabilities. When building and
training neural networks, the gradients of the loss with respect to the
parameters are required for optimization (e.g., using gradient descent).
Tensors streamline the computation of these gradients.

Main attributes of tensors:
● Rank: the number of axes of a tensor
● Shape: an n-tuple (n is the rank), each value in the tuple is the size of that

particular dimension.
● Data type: the type of value of the tensor (int, float, etc)

two_dim_tensor = [
[1, 2, 3],
[4, 5, 6]
]

● To find the entry 3, we need to index first into the 0-th list, then into the 2-nd
element → two_dim_tensor[0][2] → Since we need 2 indices, the rank is 2.

● The shape of the above tensor is (2, 3)

Tensor representations
● In NLP:

sentence

Hi John

Hi James

Hi Brian

Word dictionary

Unique word index One hot encoding

Hi 0 [1, 0, 0, 0]

John 1 [0, 1, 0, 0]

James 2 [0, 0, 1, 0]

Brian 3 [0, 0, 0, 1]

Tensor representations
Sentence Vector

Representation

Hi John [[1, 0, 0, 0], [0, 1, 0, 0]]

Hi James [[1, 0, 0, 0], [0, 0, 1, 0]]

Hi Brian [[1, 0, 0, 0], [0, 0, 0, 1]]

Mini-batch input will be:

[
[[1, 0, 0, 0], [0, 1, 0, 0]], # Hi John
[[1, 0, 0, 0], [0, 0, 1, 0]], # Hi James
[[1, 0, 0, 0], [0, 0, 0, 1]] # Hi Brian
]

Shape → (3, 2, 4) → 3D tensor
3 → Number of examples/sentences
2 → Each sentence has 2 words
4 → Each world is represented by 4 indices

Tensor representations
Images:
(3, 28, 28, 3) → 3 images, 28 rows, 28 columns, 3 color channels (R, G, B)

Videos:
(3, 24, 28, 28, 3) →3 images, 24 Frames, 28 rows, 28 columns, 3 color
channels (R, G, B)

Pytorch
PyTorch mostly follows a numpy like naming convention. Most things are
available as methods (t.tanh()) and functions (torch.tanh(t)).

Tensor Operations in Pytorch:

● Find a examples of tensor operations at:
○ https://github.com/DL4DS/sp2024_notebooks/blob/main/release/disc_nbs01/00_fundamentals.ipynb

https://github.com/DL4DS/sp2024_notebooks/blob/main/release/disc_nbs01/00_fundamentals.ipynb

SCC Setup

Connecting to SCC
● Launch scc-ondemand.bu.edu (check if you have ‘/projectnb /ds598 /’ under

files)
● Check if you can ssh {your_username}@scc1.bu.edu in your terminal.
● Recommended - Use VSCode - Follow these steps for remote

development:
https://www.bu.edu/tech/support/research/system-usage/scc-environment/editors-viewers-and-ides/vscode/

https://scc-ondemand.bu.edu/
https://www.bu.edu/tech/support/research/system-usage/scc-environment/editors-viewers-and-ides/vscode/

Things to Note
● Your home directory only has 10GB of storage. Ideally, do not install anything there.
● Recommended steps to create a conda environment in SCC:

○ module load miniconda (if you get a “WARNING: You do not have a .condarc file in your home directory “ message,
run setup_scc_condarc.sh:
https://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/python-software/miniconda-modules/)

○ Check if “conda config --show pkgs_dirs” returns “/projectnb/…”. Else do the below:
■ conda config --add pkgs_dirs /projectnb/ds598/students/{Your_Folder_Name}/.conda
■ conda config --add envs_dirs /projectnb/ds598/students/{Your_Folder_Name}/.conda
■ conda config --show pkgs_dirs - To confirm

○ By doing the “config –add” commands, the .conda path with “/projectnb/…” should be on top in the
~/.condarc file. (You could just open this file and add the paths there, skipping the above step, use cat
~/.condarc to view the file)

○ cd /projectnb/ds598/students/{Your_Folder_Name}
○ Create an environment using, “conda create -n dl4ds python=3.9”
○ conda activate dl4ds
○ You can then install packages using conda install…, pip install…, etc. Ref:

https://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/python-installs/conda/
○ Try installing a package (example: pip install numpy), and try importing it:

import numpy
print(numpy.__version__)

○ Install torch and try running some of the tensor operations

https://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/python-software/miniconda-modules/
https://www.bu.edu/tech/support/research/software-and-programming/common-languages/python/python-installs/conda/

SCC Resources
You should be able to install the packages you need now, for submitting jobs,
requesting interactive jobs, etc. Take a look at the SCC cheat sheet here:
https://dl4ds.github.io/sp2024/materials/

A few examples…

https://dl4ds.github.io/sp2024/materials/

Requesting an interactive job with GPU
● Helpful for developing and debugging your DL models

qrsh -pe omp 4 -P ds598 -l gpus=1

● You should be able to run your code with gpu after this. Try these:

print(torch.cuda.is_available())
t = torch.tensor([1,2,3])
t = t.cuda()
print(t)

Submitting a bash job script
● Once you have your model ready, run this for the entire training duration.
● Create a *.sh file, and then run

qsub -l gpus=1 -l gpu_c=7.0 -pe omp 8 run.sh
● Check status with: qstat -u {user_name}
● The *.sh file contents looks something like this:

